

Carbon Management:

Environmental Impacts, Opportunities and Challenges

Dr. C.B. Panchal

Mr. Richard D. Doctor

E3Tec Service, LLC

cpanchal@e3-tec.com

www.e3-tec.com

Webinar Outline

- Overview of Carbon-Management with the Focus on Transition Period of 2020 to 2050
- Energy-Water-Nexus & Carbon-Management
 - CO₂ Generation, Transport & Sequestration
 - Environmental Impacts
- Techno-Economics of CO₂ Capture & Utilization
- High-Priority Opportunities and Challenges
- Path Forward

 \succ

Q/A and Discussion

Overview of Carbon-Management What does it mean?

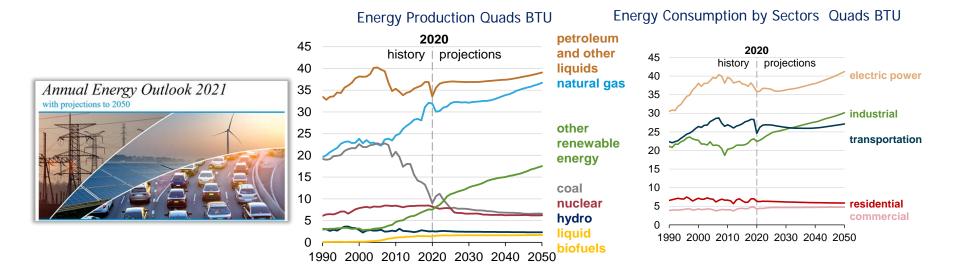
Broad meaning of Carbon-Management consists of 3-Rs

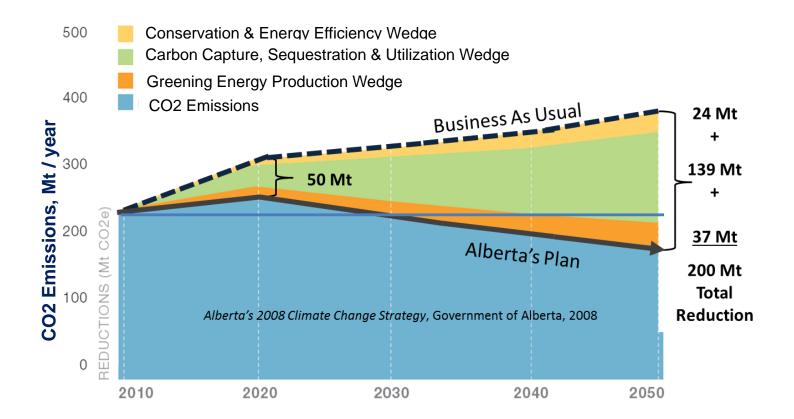
- Reduce alternate low-carbon source or by energy efficiency
- Recycle convert into original source such as fuel
- Recover and Reuse capture from generation sources and convert to products
- Dispose capture, transport and sequestration

Interlinking Carbon-Management with Renewable Energy

- Alternate Energy solar panels, wind turbines, geothermal and ocean energy
- \blacktriangleright Product hydrogen for conversion of CO₂ to fuel, such as methanol

Techno-Economic Assessment Must be Based on Life-Cycle Analysis (LCA)

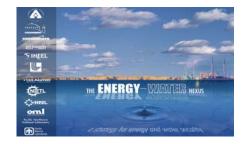

Overview of Carbon-Management EIA Report Annual Energy Outlook 2020 with Projection to 2050


Fossil energy will continue to contribute to US energy consumption with significant drop in coal-based power generation and continued increased use of natural gas

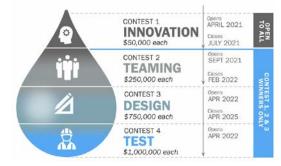
ec

- > Carbon-management will play key role in the transition period of 2020 through 2050
- Need a long-term Strategic Roadmap for achieving 2050 carbon-neutral goal

Alberta's Carbon-Management Strategy Defines Long Term Goal (Source CCEMC Grand Challenge)


Energy-Water Nexus & C-Management Why important to focus on Energy-Water Nexus?

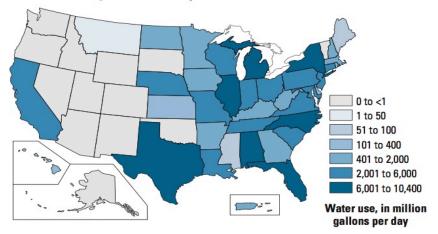
- Energy-efficient and/or renewable energy for water purification for recycle and seawater desalination is expected to play a key role in coming decades
- DOE initiative of water security managed by NREL with multiple goals of desalination, recovery from process water and net-zero water consumption in industry www.energy.gov/water-security-grand-challenge


Energy~Water Nexus Team

Representation from all DOE Multi-Program Laboratories

DOE Water Security Grand Challenge

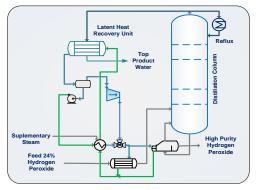
Solar Desalination Prize Round 2


Energy-Water Nexus & C-Management Why important to focus on Energy-Water Nexus?

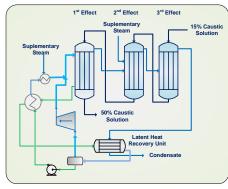
As much freshwater is used for power generation as for irrigation – need significant reduction of water consumption in power generation in terms of liters/kWh

Antelope Valley Station and Great Plains Coal Gasification Beulah, ND. 22,000 gpm water withdrawal in a zone that receives 14 in. of annual rainfall. (EIS-0072-FEIS, 1980) Once through thermoelectric power total water use 2015 (USGS circ. 1441)

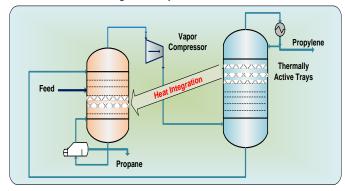
Once-through thermoelectric-power total water use



Energy-Water Nexus & C-Management Water consumption in the process industry is equally critical



- Advanced heat pumps for recovery of latent heat from thermal processes and recycling into the process have potential for significant reduction of water consumption in the process industry
- Need to develop advanced heat pumps and thermally-efficient equipment with credible LCA analysis for water saving potentials and with favorable economics, such as enhanced productivity


Distillation Process

Multi-Effect Evaporation

Thermally-Coupled Distillation

CO₂ Generation, Capture Transport and Sequestration Why it has not been widely implemented ?

SC-PC thermoelectric Levelized Cost of Electricity is \$64.4/MWh with no CO₂ capture, rising to \$105.3/MWh with 90% capture. DOE/NETL-2019 (Dec. 23, 2020)

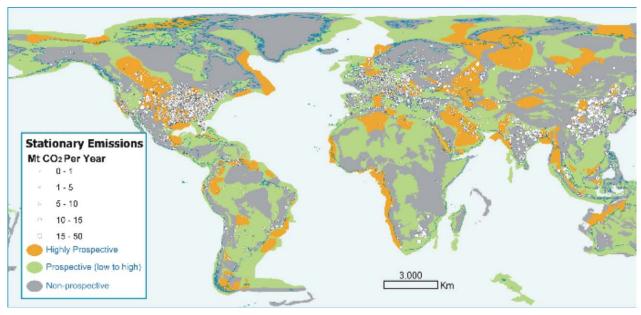
 CO_2 transport costs are site specific, and a cost model has been developed DOE/NETL-2018/1877. Typical transport CO_2 costs for 150 mi are \$1-8/ tonne CO_2 IPCC Carbon Dioxide Capture and Storage, Cambridge, 2005.

For \$4/tonne this adds \$5/MWh

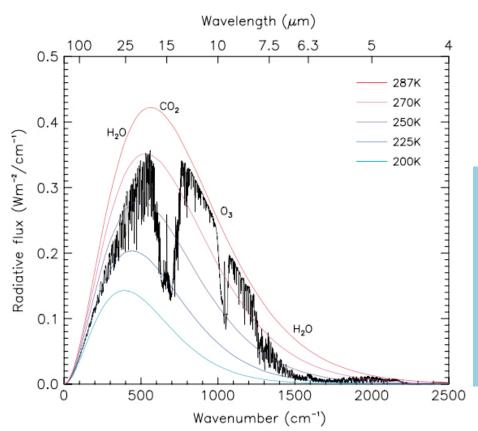

CO₂ Sequestration \$7(low)/tonne - \$33(median)/tonne have discouraged projects not linked to EOR. FE/NETL CO2 Saline Storage Cost.BaselineModelingResults_093017.xlsm

For \$16/tonne this adds \$20/MWh

CO₂ Generation, Capture Transport and Sequestration Why it has not been widely implemented ?



Pipelines are used for transporting CO₂, but ships could be economically attractive


CO₂ Generation, Capture Transport and Sequestration *Why it has not been widely implemented*? Potential CO₂ Sequestration Zones Costs estimated from \$6-33/tonne for 324 reservoirs DOE/NETL – 2017/1670

ec

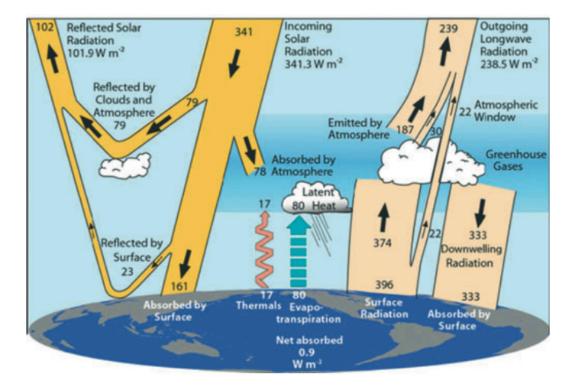
IPCC Carbon Dioxide Capture and Storage, Cambridge, 2005.

CO₂ Generation, Capture Transport and Sequestration Environmental Impacts

W. Zhong and J.D. Haigh, *"The greenhouse effect and carbon dioxide*," Royal Met. Soc., *Weather*, 68(4) April 2013.

ec

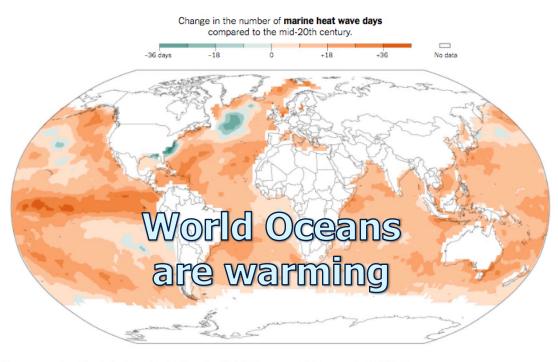
The Greenhouse is a good thing, *but* there can be too much of a good thing.


Earth $T \approx 287K = 14^{\circ}C = 59^{\circ}F$

 $Moon \ T \approx 236 K = -37^{\circ} C = -35^{\circ} F$

Environmental Impacts

When should we take action – before or after major environmental impacts?



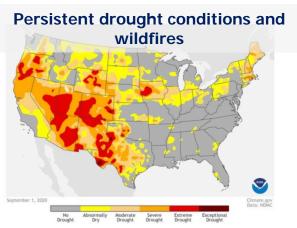
Global Energy Flows Wm⁻² Trenbeth and Fasullo (2012)

Environmental Impacts

ec

When should we take action - before or after major environmental impacts?

The average number of marine heat wave days for the period 1987-2016, compared to the average for 1925-1954. Source: Nature Climate Change | By The New York Times

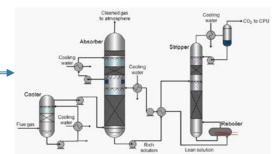

Ocean Warming with Direct Impact on Jet Streams Causing Localized Heavy Rain and Draught

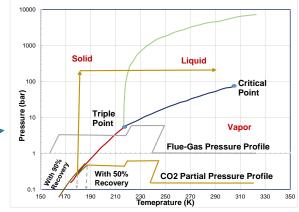
Environmental Impacts

When should we take action – before or after major environmental impacts?

ning embers of the Beckwourth Complex Fire, in Davie, Calif., on July 9, 2021. Note to reaction or and Press

Muir Glacier, Alaska: August 13, 1941 and August 31, 2004


Techno-Economics of CO₂ Capture & Utilization Will play a key role in the transition period of 2020 to 2050



Amine process

CO₂ Capture Technologies

- Absorption process commercial amine and new absorbents
- Membrane separation
- Adsorbent solid adsorbent and Metal Organic
 Framework (MOF)
- Hybrid membrane and absorption
- > Cryogenic CO_2 capture

CO2 De-sublimation Profile

Techno-Economics of CO₂ Capture & Utilization C-footprint varies from 0.16 to 0.53 based on source & CO₂ capture technology

Composition	Coal Utility	GTCC	SMR Process Location 1	SMR Flue Gas	Ethanol	
CO ₂ Concentration by Volume %	13%	6%	15%	5% to 10%	95%+	
CO ₂ Source	Post combustion	NG Combustion	SMR Reaction	NG Combustion plus CO ₂ from process	Fermentation	
Pressure, bar	1.01	1.01	20.0	1.01	1.01	
Other Major Components	N ₂ , O ₂ , SO _x , NO _x , Steam	N ₂ , O ₂ , Steam	Hydrogen, Steam	N ₂ , O ₂ , Steam	Water vapor	
C-footprint, tonne CO ₂ / tonne CO ₂ Capture						
Commercial Amine process	0.53	0.41	0.23	0.41		
Alternate Solvent Process	0.38	0.30	0.16	0.30		
Membrane Process (50% recovery)	0.27	Not applicable*	Not applicable**	Not applicable*		
Condensation or membrane separation of water vapor					Relatively small	

Techno-Economics of CO₂ Capture & Utilization Cost penalty is major challenge

CO₂ Capture Costs with DOE Target of 90% Recovery Coal Plants

 \blacktriangleright Amine Process \$70 to \$100 per tonne CO₂

DOE Target of \$40 per tonne with new CO₂ capture technologies GTCC Plants

 \succ CO₂ capture costs higher than coal plants

Steam Methane Reforming for Hydrogen Production

 \succ CO₂ capture costs lower than coal plants

Cost of electric (COE) penalties varies between \$50 and \$100 / MWh

Techno-Economics of CO_2 Capture & Utilization Conversion to high-value products to offset the cost of CO_2 Capture

Fuels

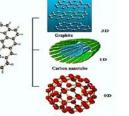
Catalytic conversion to alcohol & ethers

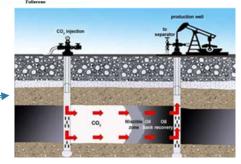
Bio-Fixation

Microalgae to high-value chemicals

Solid Products

Concrete, Graphene, Graphite =


Chemicals


Methanol, Organic acids and Alkyl carbonates

Enhanced Oil Recovery (EOR)

Depends on oil price and CO₂ source near oil production sites (demonstrated in Texas)

Techno-Economics of CO₂ Capture & Utilization

E3Tec process of CO₂ conversion to high-value alkyl carbonates with low C-footprint

	E3Tec Process	Syngas Based Process
Plant Capacity, kTA (thousand tonn	es/year)	
Dimethyl Carbonate (DMC)	52.0	50.0
Mono-Ethylene Glycol (MEG)	36.0	0.0
Capital Costs (CAPEX), \$ Million	\$164	\$223
Cost of Production, \$ / tonne DMC**	* 10 to 15 %	lower Base case

** By taking into account coproduction of MEG

LITHIUM-ION BATTERIES

 $CO_2 \longrightarrow DMC \longrightarrow Alkyl Carbonates$

DMC AS OXYGENATED FUEL ADDITIVE (DIESEL)

Application	Global DMC Market Potential - kTA*		
, ppication	2017	2030	
DMC in Polycarbonate Production	2,440	4,910	
Li-Ion Battery Electrolyte	45	350	
Solvents (replacing ketones)	1,430	1,820	
Chemical Intermediate, e.g. Polyurethane	11,350	18,470	
Potential diesel oxygenate additive**		1,580,000	

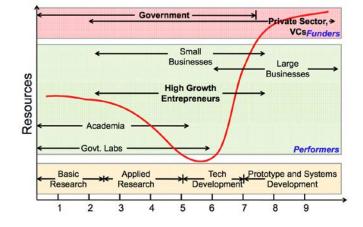
*kTA - Thousand Tonnes Per Year ** Based on government approval for pollution control

POLYCARBONATES

REPLACING KETONES

High-Priority Opportunities and Challenges With the 2030 Goals of Significant Reduction of CO₂ emissions

Opportunities


- Enhanced energy efficiency power generation, process intensification, innovative process equipment, waste heat recovery and utilization
- 2. CO₂ capture and conversion to high-value products
- 3. Water management technologies desalination, purification and recycle
- 4. Integration of renewable energy with power generation and manufacturing processes

Carbon-footprint Based Development of New Technologies

High-Priority Opportunities and Challenges Overcoming the Valley-of-Death Syndrome

Challenges

- 1. Uncertain government long-term policies with direct impact on industry responses and action
- 2. Investment on new technologies developed by small businesses and research institutes
- 3. Credible techno-economic merits of new technologies developed by research institutes
- 4. Participation of major energy corporations in developing new technologies

Path Forward

Collaboration and Consortium with Focus Technology Areas

Technology Areas

- 1. CO₂ capture and utilization DOE/NETL Programs and Industry Interests
- 2. DOE/EERE Innovative Technology of Energy Efficiency and Renewable Energy
- 3. Hydrogen Production Green and Blue Hydrogen
- 4. DOE Water Security Grand Challenge
- 5. Biobased and Waste Product (spent oil) Based Chemicals

Recommend Pursuing SBIR/STTR Grants – DOE, DOD, NSF and ARPA-E

Investing Existing *Finite* Carbon-Based Energy & Material Sources on Future *Sustained* Energy & Fresh Water Supplies

Thank You

Q/A & Discussion